
Intermediate tidyverse exercises - 2023-03-16

Data Wrangling and Visualisation Exercises

RUG @ HSG

Below, you will find some exercises to apply and improve your data wrangling and visualisation skills.
Generally, they increase in difficulty as you go along. Don’t hesitate to ask questions in the Q&A WhatsApp
group, we or your fellow students will be happy to answer them!

The packages we loaded for this exercise:

library(tidyverse)
library(tidymodels)
library(tidytext)

The data set

In these exercises we will be working with data on London AirBnBs (Click here to download and save to
csv). Each row represents one listing, and there are a variety of columns with information on the listing,
such as the name, host, price and more. This dataset could be used to study patterns in Airbnb pricing,
to understand how Airbnbs are being used in London, or to compare different neighbourhoods in London.
(Source)

Download the data, store it in the same folder as your RScript or Notebook and read in the listings.csv
file only.

listings <- read_csv("listings.csv")

Rows: 83850 Columns: 17
-- Column specification --
Delimiter: ","
chr (4): name, host_name, neighbourhood, room_type
dbl (11): index, id, host_id, latitude, longitude, price, minimum_nights, n...
lgl (1): neighbourhood_group
date (1): last_review
##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Page 1

https://raw.githubusercontent.com/rusergroupstgallen/rusergroupstgallen.github.io/main/London%20AirBnBs%20Exercise/listings.csv
https://raw.githubusercontent.com/rusergroupstgallen/rusergroupstgallen.github.io/main/London%20AirBnBs%20Exercise/listings.csv
https://www.kaggle.com/datasets/thedevastator/learning-about-airbnb-in-london-through-this-dat?resource=download&select=reviews.csv

Intermediate tidyverse exercises - 2023-03-16

Task 1: Getting an overview over the data

(a) In the tidyverse there are multiple functions that allow you to gain a quick overview over the data that
you are working with. (Tip: Try out the function glimpse() to get all of the information in one step.)

(b) Check for missing and duplicated values.

(c) Count all nominal values and print summary information on all numerical values. (Hint: The function
count() gives you the value counts for the specified variables. Can you additionally to sort the results?)

Task 2: Handling/Wrangling/Munging/Massaging and visualising the data

Now that you have an idea about the data, this part will get interesting. The bread and butter of data
analysis is visualisation, it is always wise to take a look at some charts before you do any modelling or
inference. In the spirit of the data visualisation godfather Edward Tufte:

“Above all else show the data.”

If you feel like you don’t know how to do it all yet, just have a look at the solution and try to understand
every step (see what happens if you run the code line by line).

(a) Calculate the median price for each neighbourhood and plot it in a sorted bar plot like below.

Barking and Dagenham
Bexley

Croydon
Redbridge

Sutton
Havering

Enfield
Bromley

Hillingdon
Lewisham

Harrow
Waltham Forest

Haringey
Barnet
Ealing

Kingston upon Thames
Newham

Brent
Greenwich
Hounslow

Merton
Lambeth

Tower Hamlets
Hackney

Southwark
Wandsworth

Richmond upon Thames
Islington

Hammersmith and Fulham
Camden

Westminster
Kensington and Chelsea

City of London

0 GBP 50 GBP 100 GBP 150 GBP

Median Price per Night by Neigbourhood

(b) Count the room types for the nine most frequent neighbourhoods, normalise their frequency to
a percentage and plot them into a bar chart. (Hint: The function reorder_within() from the
tidytext package can be used for ordering the bars in the different facets. Make sure to also add
scales='free' in the facet_wrap line and to add a scale_y_reordered, should you decide to order
it.).

Page 2

Intermediate tidyverse exercises - 2023-03-16

Tower Hamlets Wandsworth Westminster

Kensington and Chelsea Lambeth Southwark

Camden Hackney Islington

0% 25% 50% 75% 100%0% 25% 50% 75% 100%0% 25% 50% 75% 100%

Entire home/apt

Private room

Shared room

Entire home/apt

Private room

Shared room

Entire home/apt

Private room

Shared room

Relative Frequency

Room Type by Neighbourhood (in %)

(c) Plot the boxplots by neighbourhood of the price per night. There is no preparation of the data
required for this step, you can pipe the dataset straight into the ggplot call. In any price data, the
distribution often has a long right tail, therefore using a log scale can make the chart more legible.
In this example, use coord_cartesian() to zoom into the chart instead. As opposed to the scale_,
coord_cartesian() does not drop the observations and shift the axis and does exactly what we want:
merely zoom in.

Barking and Dagenham
Bexley

Croydon
Redbridge

Sutton
Havering

Enfield
Bromley

Hillingdon
Lewisham

Harrow
Waltham Forest

Haringey
Barnet
Ealing

Kingston upon Thames
Newham

Brent
Greenwich
Hounslow

Merton
Lambeth

Tower Hamlets
Hackney

Southwark
Wandsworth

Richmond upon Thames
Islington

Hammersmith and Fulham
Camden

Westminster
Kensington and Chelsea

City of London

0 GBP 100 GBP 200 GBP 300 GBP 400 GBP

Outliers removed

Price Distribution by Neighbourhood

Page 3

Intermediate tidyverse exercises - 2023-03-16

Task 3: A basic model

So far we have only analysed some aspects of the data. Let’s get to the next step of making a basic model
for predictions. We will show the tidymodels package, which makes data preparation really easy.

The first step is always splitting the data into a training and testing set. The training data set will be
where we let the model learn patterns in the data. The testing data set will be where we want to see if the
model can make predictions on previously unseen data. Testing the model on the dataset it has learned from
doesn’t make sense, as the goal is to take the model and use it on new data.

set.seed(1) # setting random seed to make results reproducible
split <- initial_split(listings, frac = 0.75)

train_data <- training(split)
test_data <- testing(split)

What the above code did was randomly sampling 75% from the total data and storing it in train_data.
Then, filtering out the observations from the dataset that are now in the training set and taking the rest
and storing it in test_data.

split

<Training/Testing/Total>
<62887/20963/83850>

We can see in the split object how many rows were used for training and testing.

Now we can select a few variables, that we will use in a linear regression, let’s say these three to predict the
price:

listings %>%
select(neighbourhood, room_type, number_of_reviews, price) %>%
glimpse()

Rows: 83,850
Columns: 4
$ neighbourhood <chr> "Islington", "Kensington and Chelsea", "Westminster"~
$ room_type <chr> "Private room", "Entire home/apt", "Entire home/apt"~
$ number_of_reviews <dbl> 16, 85, 41, 93, 28, 122, 62, 79, 115, 5, 187, 70, 50~
$ price <dbl> 65, 100, 300, 175, 65, 29, 147, 147, 34, 100, 45, 19~

We will use a linear regression. As linear regressions require numeric predictors, we cannot use
neighbourhood and room_type in their current form. We can use dummy encoding, i.e. represent them in
binary form with zeros and ones. Tidymodels makes this preprocessing step very easy:

preprocessing_recipe <- recipe(price ~ neighbourhood + room_type +
number_of_reviews,

data = train_data) %>%
step_dummy(all_nominal_predictors())

We can apply the preprocessing steps to the testing data like such and see what comes out the other side:

Page 4

Intermediate tidyverse exercises - 2023-03-16

preprocessing_recipe %>%
prep() %>%
juice()

A tibble: 62,887 x 36
numbe~1 price neigh~2 neigh~3 neigh~4 neigh~5 neigh~6 neigh~7 neigh~8 neigh~9
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 44 55 0 0 0 0 0 0 0 0
2 15 50 0 0 0 0 0 0 0 0
3 3 53 0 0 0 0 0 0 0 0
4 2 110 0 0 0 0 0 0 0 0
5 0 100 0 0 0 0 0 0 0 0
6 3 560 0 0 0 0 0 0 0 0
7 8 115 0 0 0 0 0 0 0 0
8 1 29 0 0 0 0 0 0 0 0
9 29 80 0 0 0 0 0 0 0 0
10 7 189 0 0 0 0 0 0 0 0
... with 62,877 more rows, 26 more variables: neighbourhood_Enfield <dbl>,
neighbourhood_Greenwich <dbl>, neighbourhood_Hackney <dbl>,
neighbourhood_Hammersmith.and.Fulham <dbl>, neighbourhood_Haringey <dbl>,
neighbourhood_Harrow <dbl>, neighbourhood_Havering <dbl>,
neighbourhood_Hillingdon <dbl>, neighbourhood_Hounslow <dbl>,
neighbourhood_Islington <dbl>, neighbourhood_Kensington.and.Chelsea <dbl>,
neighbourhood_Kingston.upon.Thames <dbl>, neighbourhood_Lambeth <dbl>, ...

Perfect, now we can fit the model:

trained_model <- workflow() %>%
add_model(linear_reg()) %>%
add_recipe(preprocessing_recipe) %>%
fit(train_data)

Let’s look at the coefficients:

Page 5

Intermediate tidyverse exercises - 2023-03-16

(Intercept)

neighbourhood_Camden

neighbourhood_City.of.London

neighbourhood_Hammersmith.and.Fulham

neighbourhood_Islington

neighbourhood_Kensington.and.Chelsea

neighbourhood_Merton

neighbourhood_Richmond.upon.Thames

neighbourhood_Southwark

neighbourhood_Wandsworth

neighbourhood_Westminster

number_of_reviews

room_type_Private.room

room_type_Shared.room

-50 0 50 100

GBP

with p-value < 0.05

Regression coefficients

Careful: We can’t interpret these intercepts causally without further assumptions, however we can see
that with the given variables, the model picked up on some signal from more expensive neighbourhoods
(like Westminster and Kensington and Chelsea). Additionally, the dummy variables have to be interpreted
relative to the level which has been left out. For example: The share room and private room are less expensive
compared to a full house, which is the level left out by the dummy encoding to avoid multicollinearity.
Now, we can make predictions on the testing data to see if the model is any good:

trained_model %>%
This means: stick predictions for each line to the right
augment(test_data) %>%
rsq(truth = price, estimate = .pred)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 rsq standard 0.0785

trained_model %>%
This means: stick predictions for each line to the right
augment(test_data) %>%
mae(truth = price, estimate = .pred)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 mae standard 65.8

As you can see, the 𝑅2 of the predictions is under 10%, so not very impressive. The mean average error is
about 65 pounds - also not impressive.

(a) Your task: Can you create a model (include more variables, other transformations, other model, …)
that performs better than that? Let us know on our socials (Instagram)!

Page 6

Intermediate tidyverse exercises - 2023-03-16

Solutions

Task 1

(a)

Rows: 83,850
Columns: 17
$ index <dbl> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1~
$ id <dbl> 13913, 15400, 17402, 24328, 25023, 2512~
$ name <chr> "Holiday London DB Room Let-on going", ~
$ host_id <dbl> 54730, 60302, 67564, 41759, 102813, 103~
$ host_name <chr> "Alina", "Philippa", "Liz", "Joe", "Ama~
$ neighbourhood_group <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
$ neighbourhood <chr> "Islington", "Kensington and Chelsea", ~
$ latitude <dbl> 51.56802, 51.48796, 51.52098, 51.47298,~
$ longitude <dbl> -0.11121, -0.16898, -0.14002, -0.16376,~
$ room_type <chr> "Private room", "Entire home/apt", "Ent~
$ price <dbl> 65, 100, 300, 175, 65, 29, 147, 147, 34~
$ minimum_nights <dbl> 1, 3, 3, 30, 4, 10, 3, 2, 1, 1, 1, 3, 2~
$ number_of_reviews <dbl> 16, 85, 41, 93, 28, 122, 62, 79, 115, 5~
$ last_review <date> 2019-06-10, 2019-05-05, 2019-06-19, 20~
$ reviews_per_month <dbl> 0.15, 0.73, 0.41, 0.88, 0.69, 1.08, 0.5~
$ calculated_host_listings_count <dbl> 3, 1, 14, 1, 1, 3, 5, 5, 1, 1, 1, 1, 2,~
$ availability_365 <dbl> 347, 203, 269, 329, 2, 222, 355, 342, 3~

(b)

This will give you a sorted fraction of missing values by column, i.e. “What percentage of missing values in
each column?”:

colMeans(is.na(listings)) %>%
enframe() %>%
arrange(-value)

A tibble: 17 x 2
name value
<chr> <dbl>
1 neighbourhood_group 1
2 last_review 0.251
3 reviews_per_month 0.251
4 host_name 0.000561
5 name 0.000310
6 index 0
7 id 0
8 host_id 0
9 neighbourhood 0
10 latitude 0
11 longitude 0
12 room_type 0
13 price 0
14 minimum_nights 0

Page 7

Intermediate tidyverse exercises - 2023-03-16

15 number_of_reviews 0
16 calculated_host_listings_count 0
17 availability_365 0

For duplicate rows check if the dimensions of the original dataset and when selecting distinct rows are the
same:

listings %>%
dim()

[1] 83850 17

listings %>%
distinct() %>%
dim()

[1] 83850 17

As they are, it is safe to say that there aren’t any duplicate rows.

(c)

Nominal counts (removing high cardinality variables, that is, those that are nominal but have too many
unique values to make sense to count):

neighbourhood room_type

0 2500 5000 7500 0 10000 20000 30000 40000

Shared room

Private room

Entire home/apt

Havering
Bexley
Sutton

Barking and Dagenham
City of London

Harrow
Kingston upon Thames

Hillingdon
Enfield

Bromley
Redbridge
Hounslow

Croydon
Richmond upon Thames

Waltham Forest
Merton
Barnet

Greenwich
Ealing

Newham
Haringey

Lewisham
Brent

Hammersmith and Fulham
Wandsworth

Lambeth
Southwark

Islington
Kensington and Chelsea

Camden
Hackney

Tower Hamlets
Westminster

Count

excluding high cardinality ones

Counts of Nominal Variables

Page 8

Intermediate tidyverse exercises - 2023-03-16

Task 2

(a)

listings %>%
group_by(neighbourhood) %>%
summarise(median_price = median(price)) %>%
ggplot(aes(x = median_price,

y = neighbourhood %>% fct_reorder(median_price))) +
geom_col(fill = "#33678A") +
labs(title = "Median Price per Night by Neigbourhood",

x = NULL, y = NULL) +
scale_x_continuous(labels = scales::comma_format(suffix = " GBP")) +
theme_minimal() +
theme(plot.title = element_text(face = "bold"))

(b)

five_nh <- listings %>%
count(neighbourhood, sort = T) %>%
head(8) %>%
pull(neighbourhood)

listings %>%
filter(neighbourhood %in% five_nh) %>%
count(neighbourhood, room_type) %>%
group_by(neighbourhood) %>%
mutate(n = n/sum(n)) %>%
ungroup() %>%
ggplot(aes(x = n,

y = room_type)) +
geom_col(fill = "#33678A") +
labs(title = "Room Type by Neighbourhood (in %)",

y = NULL, x = "Relative Frequency") +
facet_wrap(~ neighbourhood) +
scale_x_continuous(labels = scales::percent_format(),

limits = c(0,1)) +
theme_minimal() +
theme(plot.title = element_text(face = "bold"))

(c)

listings %>%
ggplot(aes(x = price,

y = neighbourhood %>% fct_reorder(price))) +
geom_boxplot(outlier.colour = NA) +
labs(title = "Price Distribution by Neighbourhood",

subtitle = "Outliers removed", x = NULL, y = NULL) +
scale_x_continuous(labels = scales::comma_format(suffix = " GBP")) +
coord_cartesian(xlim = c(0, 450)) +
theme_minimal() +
theme(plot.title = element_text(face = "bold"))

Page 9

Intermediate tidyverse exercises - 2023-03-16

Task 3

We can highly recommend watching Julia Silge’s Youtube Videos if you are interested in learning more about
supervised machine learning with tidymodels. Also, we have our own session on tidymodels, which will
come up soon, if you’ll vote for it in the upcoming polls.

Page 10

	The data set
	Task 1: Getting an overview over the data
	Task 2: Handling/Wrangling/Munging/Massaging and visualising the data
	Task 3: A basic model
	Solutions
	Task 1
	Task 2
	Task 3

